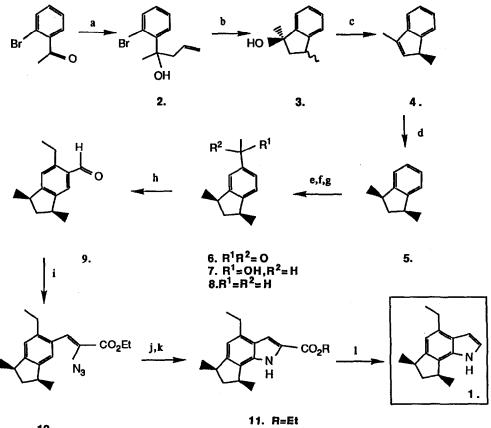
THE SYNTHESIS OF (±) CIS-TRIKENTRIN A

JOHN K. MACLEOD* and LILLAN C. MONAHAN

Research School of Chemistry, Australian National University, G.P.O. Box 4. Canberra, A.C.T. 2601, Australia.

Abatract- The synthesis of a novel sponge metabolite is described, utilising an any radical cyclisation to form the substituted indane system.


The trikentrins are a group of novel, biologically active indoles recently isolated from the marine sponge Trikentrion flabelliforme.¹ They all contain a dimethylcyclopentene molety fused to an indole ring, as typified by cis-trikentrin A (1). The indane system present in 1 appeared an ideal candidate for the application of an aryl radical cyclisation to synthesis. While such cyclisations have been the subject of considerable mechanistic study^{2,3}, only examples giving heterocyclic rings have been used in the synthesis of natural products.

The radical precursor 24 was readily obtained (75%) by action of ally imagnesium bromide on o-bromoacetophenone. Treatment of 2 with tributyltin hydride led to a mixture of cis- and trans- indanols 3 after potassium fluoride work up. These could be separated by column chromatography but this was accompanied by the ready elimination of water . Conversion of the diastereomeric mixture to dimethylindene 4, and subsequent hydrogenation, provided an efficient route to the epimeric dimethylindanes [88% from 2] with the cis-isomer 5 predominating (9:1 cis:trans).

Acetylation of the mixture of dimethylindanes using CH3COCI / AICI3 yielded the desired 5-substituted indane [shown as the major cis- compound 6] (85%) with no trace of the 4-substituted product, presumably due to steric effects. After reduction in two steps to the ethyl compound 8 (79%), regiospecific formylation was achieved using CH2CIOMe /TiCl4 to give 9 (74%).

The indole ring was then elaborated via condensation of 9 with ethyl azidoacetate and thermolysis of the resulting unsaturated azide 10 (95%)⁵. Removal of the minor amount of the trans- isomer could be accomplished by column chromatography at this stage. The ester 11 obtained was hydrolysed to the acid 12 (74%) with KOH in dioxan/water. Problems previously encountered in the decarboxylation of indole 2-carboxylic acids⁶ were avoided by the use of flash vacuum pyrolysis to remove the acid function (89%), producing (±) cis- trikentrin A(1), identical in all respects except optical activity with the natural product⁷.

Adaptations of this route directed to the synthesis of the other trikentrins is in progress.

10.

11. H=E1 12. R=H

a) CH₂CHCH₂MgBr,Et₂O b) Bu₃SnH,AIBN,C₆H₆ c) H⁺,CHCl₃ d) H₂,PdC,CHCl₃ e) AcCl,AlCl₃,CH₂Cl₂ f) NaBH₄,MeOH g) H₂,PdC,CHCl₃ h) Cl₂HCOCH₃,TiCl₄,CH₂Cl₂ i) EtO₂CCH₂N₃,NaOEt,EtOH j) C₇H₈ k) KOH,H₂O,dioxan l) F.V.P.,600°C,0.003mmHg.

- 1) R. J. Capon and J. K. MacLeod, Tetrahedron, 1986, 42, 6545.
- 2) B. Giese, "Radicals in Organic Syntheses", Pergamon, Oxford, 1986.
- 3) A. N. Abeywickrema and A. L. J. Beckwith, J.Chem.Soc., Chem.Commun., 1986, 464.
- 4) All new compounds gave satisfactory elemental analyses or accurate mass measurements and ¹H &¹³C n.m.r. spectra consistent with the assigned structures.
- 5) C. J. Moody, J.Chem.Soc., Perkin Trans. 1, 1984, 1333.
- 6) See Ref.5 and E.Piers and R.K.Brown, Can.J.Chem, 1962, 40, 559.
- 7) 8H 8.1(b,1H),7.15(dd,1H).6.83(s,1H),6.59(dd,1H),3.4(m,1H),3.2(m,1H),2.93(q,2H),

2.60(m,1H),1.49(d,3H),1.38(d,3H),1.37(t,3H),1.3(m,1H). (cf.Ref.1.)

(Received in UK 11 November 1987)